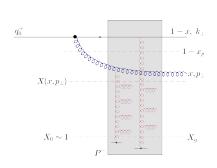
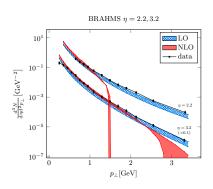
Particle production in pA collisions beyond leading order

Edmond lancu IPhT Saclay & CNRS

w/ A.H. Mueller and D.N. Triantafyllopoulos, arXiv:1608.05293





- pQCD at high-energy, or 'small-x', is complicated by non-linear effects associated with the high gluon densities
 - gluon saturation, multiple scattering
 - the "power-suppressed corrections" are now effects of $\mathcal{O}(1)$
 - pQCD resummations based on eikonal approximation
 - Wilson lines, Color Glass Condensate
 - new scattering operators: dipole, quadrupole, ...
 - related to the small-x limit of TMD's
 - non-linear evolution equations: BK, B-JIMWLK
 - new factorization scheme(s): CGC (or 'generalized k_T '), hybrid

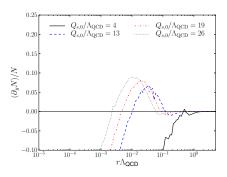
- Realistic phenomenology requires (at least) NLO accuracy
- The CGC formalism has recently been promoted to NLO ©
 - inclusion of running coupling corrections in BK (Kovchegov and Weigert, 2016; Balitsky, 2016)
 - NLO versions for the BK and B-JIMWLK equations
 (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
 - NLO impact factor for particle production in pA collisions (Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
 - NLO impact factor for DIS (Balitsky and Chirilli, 2010-2013; Beuf, 2016)

- Realistic phenomenology requires (at least) NLO accuracy
- The CGC formalism has recently been promoted to NLO ©
 - inclusion of running coupling corrections in BK (Kovchegov and Weigert, 2016; Balitsky, 2016)
 - NLO versions for the BK and B-JIMWLK equations (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
 - NLO impact factor for particle production in pA collisions (Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
 - NLO impact factor for DIS (Balitsky and Chirilli, 2010-2013; Beuf, 2016)
- But the NLO approximations turned out to be disappointing ©

- Realistic phenomenology requires (at least) NLO accuracy
- The CGC formalism has recently been promoted to NLO ©
 - inclusion of running coupling corrections in BK (Kovchegov and Weigert, 2016; Balitsky, 2016)
 - NLO versions for the BK and B-JIMWLK equations (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
 - NLO impact factor for particle production in pA collisions (Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
 - NLO impact factor for DIS (Balitsky and Chirilli, 2010-2013; Beuf, 2016)
- But the NLO approximations turned out to be disappointing ©
- New resummations (of the perturbative expansion) have been recently devised to cure these problems

NLO BK evolution

"Negative growth" of the dipole scattering amplitude



Lappi, Mäntysaari, arXiv:1502.02400

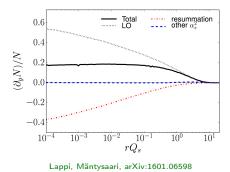
Hardly a surprise

- similar problems for NLO BFKL
- large transverse logarithms
- collinear resummations
- Mellin representation

(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)

NLO BK evolution

"Negative growth" of the dipole scattering amplitude



Hardly a surprise

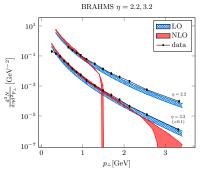
- similar problems for NLO BFKL
- large transverse logarithms
- collinear resummations
- Mellin representation

(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)

- Collinear improvement for NLO BK (transverse coordinates)
 (E.I., J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, 2015)
- Evolution becomes stable with promising phenomenology
 - excellents fits to DIS (lancu et al, 2015; Albacete, 2015)

Particle production in d+Au collisions (RHIC)

ullet Very good agreement at low p_\perp $\ \odot$... but negative at larger p_\perp $\ \odot$

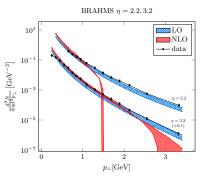


Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

- Is this a real problem ?
 - "small-x resummations do not apply at large p_{\perp} "
 - but $p_{\perp} \sim Q_s$ is not that large !
 - and the turn-over is dramatic
- Are the 2 problems related ?
 - transverse logs are ubiquitous

Particle production in d+Au collisions (RHIC)

ullet Very good agreement at low p_\perp $\ \odot$... but negative at larger p_\perp $\ \odot$

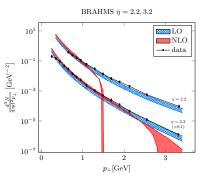


Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

- Is this a real problem ?
 - \bullet "small- $\!x$ resummations do not apply at large p_\perp "
 - but $p_{\perp} \sim Q_s$ is not that large !
 - and the turn-over is dramatic
- Are the 2 problems related ?
 - transverse logs are ubiquitous
- ullet Various proposals which alleviate the problem (pushed to higher p_{\perp})
 - Kang, Vitev, and Xing, arXiv:1403.5221
 - Altinoluk, Armesto, Beuf, Kovner, and Lublinsky, arXiv:1411.2869
 - Ducloué, Lappi, and Zhu, arXiv:1604.00225

Particle production in d+Au collisions (RHIC)

ullet Very good agreement at low p_{\perp} $\ \odot$... but negative at larger p_{\perp} $\ \odot$



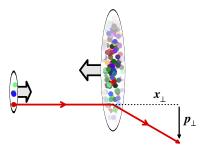
Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

- Is this a real problem ?
 - "small-x resummations do not apply at large p_{\perp} "
 - but $p_{\perp} \sim Q_s$ is not that large !
 - and the turn-over is dramatic
- Are the 2 problems related ?
 - transverse logs are ubiquitous

• A fresh look at the NLO calculation of the cross-section (E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

Quark production at forward rapidity

• A quark initially collinear with the proton acquires a transverse momentum p_{\perp} via multiple scattering off the dense nucleus



$$\eta \,=\, \frac{1}{2} \ln \frac{p^+}{p^-}$$

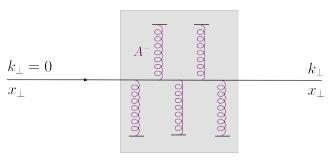
$$x_p = \frac{p_\perp}{\sqrt{s}} \, \mathrm{e}^{\eta}$$

$$X_g = \frac{p_{\perp}}{\sqrt{s}} e^{-\eta}$$

- \bullet η : quark rapidity in the COM frame
- ullet x_p : longitudinal fraction of the quark in the proton
- ullet X_g : longitudinal fraction of the gluon in the target
- $\eta > 1$: 'forward rapidity' $\Longrightarrow X_q \ll x_p$ ('dense-dilute')
 - RHIC: $p_{\perp}=2$ GeV, $\eta=3\Longrightarrow x_p=0.2$ & $X_q=5\times 10^{-4}$

Wilson lines

Multiple scattering can be resummed in the eikonal approximation



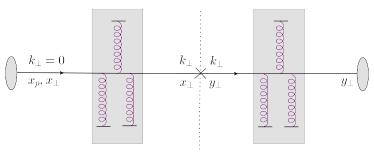
Amplitude:
$$\mathcal{M}_{ij}(m{k}_\perp) \equiv \int \mathrm{d}^2m{x}_\perp\,\mathrm{e}^{-im{x}_\perp\cdotm{k}_\perp}\,V_{ij}(m{x}_\perp)$$

Wilson line:
$$V(\boldsymbol{x}_{\perp}) = P \exp \left\{ ig \int dx^{+} A_{a}^{-}(x^{+}, \boldsymbol{x}_{\perp}) t^{a} \right\}$$

 \bullet A_a^- : color field representing small- $\!x$ gluons in the nucleus

Wilson lines

Multiple scattering can be resummed in the eikonal approximation

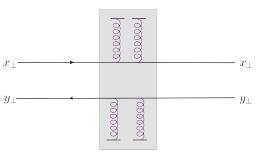


Amplitude:
$$\mathcal{M}_{ij}(\boldsymbol{k}_{\perp}) \equiv \int \mathrm{d}^2 \boldsymbol{x}_{\perp} \, \mathrm{e}^{-i \boldsymbol{x}_{\perp} \cdot \boldsymbol{k}_{\perp}} \, V_{ij}(\boldsymbol{x}_{\perp})$$

• Average over the color fields A^- in the target (CGC)

Dipole picture

• Equivalently: the elastic S-matrix for a $q\bar{q}$ color dipole

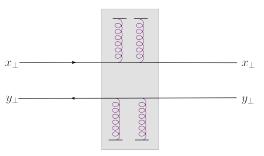


$$egin{aligned} S(oldsymbol{x},oldsymbol{y};X_g) &\equiv rac{1}{N_c} \left\langle ext{tr} igl[V(oldsymbol{x}) V^\dagger(oldsymbol{y}) igr]
ight
angle_{X_g} \ &rac{\mathrm{d}\sigma}{\mathrm{d}y\,\mathrm{d}^2oldsymbol{k}} \, \simeq \, x_p q(x_p) \, \int_{oldsymbol{x},oldsymbol{y}} \mathrm{e}^{-\mathrm{i}(oldsymbol{x}-oldsymbol{y})\cdotoldsymbol{k}} \, S(oldsymbol{x},oldsymbol{y};X_g) \end{aligned}$$

• The Fourier transform $S(k, X_g)$ of the dipole S-matrix is a TMD for gluons in the nucleus (cf. talk by Daniel Boer).

Dipole picture

• Equivalently: the elastic S-matrix for a $q\bar{q}$ color dipole

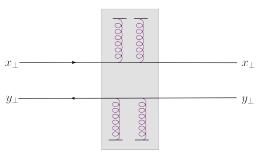


$$egin{aligned} S(m{x},m{y};X_g) &\equiv rac{1}{N_c} \left\langle ext{tr} igl[V(m{x}) V^\dagger(m{y}) igr]
ight
angle_{X_g} \ &rac{\mathrm{d}\sigma}{\mathrm{d}y\,\mathrm{d}^2m{k}} \,\simeq\, x_p q(x_p) \, \int_{m{x},m{y}} \mathrm{e}^{-\mathrm{i}(m{x}-m{y})\cdotm{k}} \, \, S(m{x},m{y};X_g) \end{aligned}$$

 'Hybrid factorization': collinear-fact. for p & CGC-fact. for A (Dumitru, Hayashigaki, and Jalilian-Marian, arXiv:hep-ph/0506308).

Dipole picture

• Equivalently: the elastic S-matrix for a $q\bar{q}$ color dipole



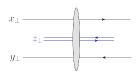
$$egin{aligned} S(m{x},m{y};X_g) &\equiv rac{1}{N_c} \left\langle ext{tr} igl[V(m{x}) V^\dagger(m{y}) igr]
ight
angle_{X_g} \ &rac{\mathrm{d}\sigma}{\mathrm{d}y\,\mathrm{d}^2m{k}} \,\simeq\, x_p q(x_p) \, \int_{m{x},m{y}} \mathrm{e}^{-\mathrm{i}(m{x}-m{y})\cdotm{k}} \, \, S(m{x},m{y};X_g) \end{aligned}$$

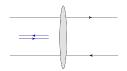
• The dipole picture is preserved by the high-energy evolution up to NLO (Kovchegov and Tuchin, 2002; Mueller and Munier, 2012)

Dipole evolution (leading order)

• Probability $\sim \alpha_s \ln \frac{1}{x}$ to radiate a soft gluon with $x \equiv \frac{p^+}{q_0^+} \ll 1$

• Large N_c : the dipole splits into two new dipoles (Al Mueller, 1990)





ullet Evolution equation for the dipole S-matrix $S_{m{xy}}(Y)$ with $Y \equiv \ln(1/x)$

$$\frac{\partial S_{xy}}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int d^2z \frac{(x-y)^2}{(x-z)^2 (y-z)^2} \left[S_{xz} S_{zy} - S_{xy} \right]$$

The BK equation (Balitsky, '96; Kovchegov, '99)

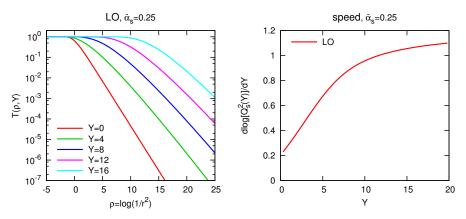
ullet Non-linear equation for the scattering amplitude $T_{m{xy}} \equiv 1 - S_{m{xy}}$

$$\frac{\partial T_{xy}}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int d^2z \frac{(x-y)^2}{(x-z)^2 (y-z)^2} \left[T_{xz} + T_{zy} - T_{xy} - T_{xz} T_{zy} \right]$$

- Non-linear generalization of the BFKL equation
- ullet 2 regimes depending upon the parent dipole size $r=|oldsymbol{x}-oldsymbol{y}|$
 - small dipole $r \ll 1/Q_s(Y)$: weak scattering $T \ll 1 \Rightarrow \mathsf{BFKL}$ equation
 - larger dipole $r \gtrsim 1/Q_s(Y)$: approach to black disk limit T=1
 - saturation momentum $Q_s(Y)$: T(r,Y)=0.5 when $r=1/Q_s(Y)$
- ullet $Q_s(Y)$ increases rapidly with Y due to the BFKL dynamics
 - ullet successive soft emissions leading to an exponential growth of T

The saturation front

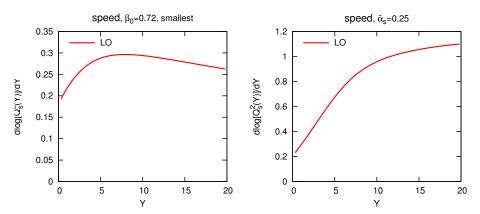
 \bullet $T\equiv 1-S$ as a function of $\rho\equiv \ln(1/r^2)$ with increasing Y



- color transparency at large ρ (small r) : $T \propto r^2 = \mathrm{e}^{-\rho}$
- ullet unitarization at small ho (large r) : T=1 (black disk limit)
- saturation exponent: $\lambda_s \equiv \frac{\mathrm{d} \ln Q_s^2}{\mathrm{d} Y} \simeq 1$ for $Y \gtrsim 10$

Adding running coupling: rcBK

ullet The LO saturation exponent is way too large: $\lambda_{
m HERA}=0.2\div0.3$

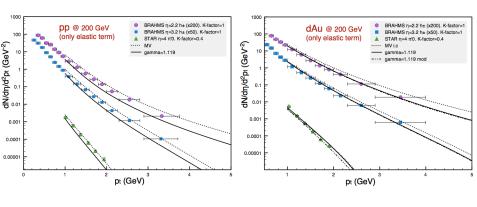


- Including running coupling dramatically slows down the evolution
 - realistic value for the saturation exponent
- ... but there are other, equally important, NLO corrections !

LO phenomenology (rcBK)

(Albacete, Dumitru, Fujii, Nara, arXiv:1209:2001)

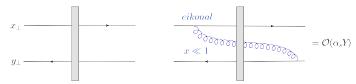
• Fit parameters: initial condition for the rcBK equation + K-factors



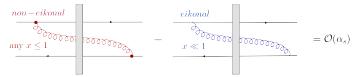
$$\left. \frac{\mathrm{d}N}{\mathrm{d}y\,\mathrm{d}^2\boldsymbol{k}} \right|_{\text{\tiny LO}} \, = \, \boldsymbol{K^h} \int_{x_p}^1 \frac{\mathrm{d}z}{z^2} \, \frac{x_p}{z} q\left(\frac{x_p}{z}\right) \, \mathcal{S}\left(\frac{\boldsymbol{k}}{z}, X_g\right) \, D_{h/q}(z)$$

Beyond leading order

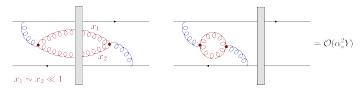
• LO approximation: any number $n \ge 0$ of soft emissions $\Longrightarrow (\alpha_s Y)^n$



NLO correction to impact factor: the first gluon is hard



ullet NLO corrections to the evolution: 2 soft gluons, with similar values of x



NLO factorization scheme by CXY

(Chirilli, Xiao, and Yuan, arXiv:1203.6139 [hep-ph])

Recall first the factorization at LO :

$$\frac{\mathrm{d}N}{\mathrm{d}y\,\mathrm{d}^2\boldsymbol{k}}\Big|_{\scriptscriptstyle \mathrm{LO}} = x_p q(x_p) \int \mathrm{d}^2\boldsymbol{r}\,\mathrm{e}^{-\mathrm{i}\boldsymbol{r}\cdot\boldsymbol{k}} \,\, S_{\scriptscriptstyle \mathrm{LO}}(\boldsymbol{r},X_g) \equiv \, \boldsymbol{\mathcal{S}}_{\scriptscriptstyle \mathrm{LO}}(\boldsymbol{k},X_g)$$

ullet CXY: "Replace $\mathcal{S}_{\mathrm{LO}}$ by $\mathcal{S} \equiv \mathcal{S}_{\mathrm{NLO}}$ and add the impact factor correction"

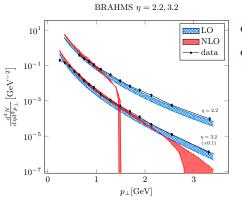
$$\frac{\mathrm{d}N}{\mathrm{d}y\,\mathrm{d}^{2}\boldsymbol{k}}\Big|_{\mathrm{NLO}} = \mathcal{S}(\boldsymbol{k}, X_{g}) + \bar{\alpha}_{s} \int_{0}^{1} \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0)\right] \mathcal{S}(\boldsymbol{k}, X_{g})$$

- ullet $\mathcal{K}(x)$: kernel for emitting a gluon by the dipole with exact kinematics
- $\mathcal{K}(0)$: small-x (eikonal) limit of $\mathcal{K}(x) =$ dipole kernel
- ullet 'plus' prescription for the integral over x
- local in x (here X_g)
- ullet Natural generalization of NLO k_\perp -factorization to high density

The negativity problem

(Stasto, Xiao, and Zaslavsky, arXiv:1307.4057)

ullet Sudden drop in the numerical estimate at momenta p_{\perp} of order Q_s



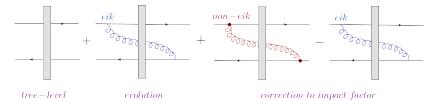
- "NLO evolution is notoriously unstable"
- ullet Sure, but in this calculation $\mathcal{S} pprox \mathcal{S}_{ ext{rcBK}}$
 - rcBK evolution is well behaved
 - the actual "LO approx" in practice

$$\left.\frac{\mathrm{d}N}{\mathrm{d}y\,\mathrm{d}^2\boldsymbol{k}}\right|_{\scriptscriptstyle \mathrm{LO}} = \,\mathcal{S}_{\scriptscriptstyle \mathrm{rcBK}}(\boldsymbol{k},X_g)$$

• The NLO correction to the impact factor is negative (not a real surprise) ... and dominates over the LO result at sufficiently large k_{\perp}

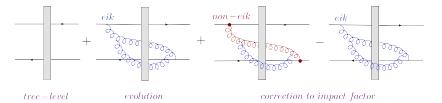
(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

One gluon emission



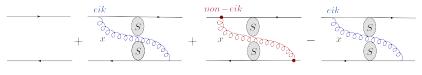
(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

• Building up the evolution ...



(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

LO evolution (say, rcBK) fully included



 \mathcal{S} (solution to \mathcal{BK} equation)

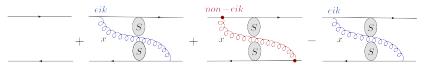
NLO correction to impact factor

$$\mathcal{N} = \mathcal{S}(\mathbf{k}, X_g) + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right] \mathcal{S}(\mathbf{k}, X(x)); \quad \mathbf{X}(x) \equiv \frac{X_g}{x}$$

- Non-local in x: target evolution depends upon the x-value of the gluon
 - lower limit on x: $X \le 1 \Longrightarrow x \ge X_g$
- Different from the CXY formula ... but equivalent to NLO accuracy
 - $\mathcal{S}(X(x)) \simeq \mathcal{S}(X_g)$ since integral controlled by $x \sim 1$
 - \bullet remove lower limit $X_g \Longrightarrow$ the 'plus' prescription

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

LO evolution (say, rcBK) fully included



 \mathcal{S} (solution to \mathcal{BK} equation)

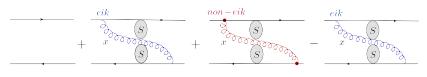
NLO correction to impact factor

$$\mathcal{N} = \mathcal{S}(\boldsymbol{k}, X_g) + \bar{\alpha}_s \int_{X_g}^{1} \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right] \mathcal{S}(\boldsymbol{k}, X(x)) ; \quad X(x) \equiv \frac{X_g}{x}$$

- Non-local in x: target evolution depends upon the x-value of the gluon
 - lower limit on $x: X \leq 1 \Longrightarrow x \geq X_q$
- Different from the CXY formula ... but equivalent to NLO accuracy
- N.B.: $S(X_q) > S(X(x))$ for any $x < 1 \Longrightarrow$ some over-subtraction

The fine-tuning problem

One adds and subtracts the LO evolution (the dominant contribution!)



S (solution to BK equation)

NLO correction to impact factor

$$\mathcal{N} = \mathcal{S}(\mathbf{k}, X_g) + \bar{\alpha}_s(k_\perp^2) \int_{X_g}^1 \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(\mathbf{0}) \right] \mathcal{S}(\mathbf{k}, X(x))$$

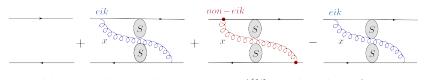
- The 'added' and 'subtracted' pieces are treated differently
 - the 'added' piece is used to reconstruct the solution to BK

$$S(\mathbf{k}, X_g) = S_0(\mathbf{k}) + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \mathcal{K}(0) S(\mathbf{k}, X(x))$$

• the 'subtracted' piece is used to isolate the NLO impact factor

The fine-tuning problem

One adds and subtracts the LO evolution (the dominant contribution!)



S (solution to BK equation)

NLO correction to impact factor

$$\mathcal{N}_{\text{CXY}} = \mathcal{S}(\mathbf{k}, X_g) + \bar{\alpha}_s(k_{\perp}^2) \int_0^1 \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right] \mathcal{S}(\mathbf{k}, X_g)$$

- The 'added' and 'subtracted' pieces are treated differently
 - the 'added' piece is used to reconstruct the solution to BK

$$S(\mathbf{k}, X_g) = S_0(\mathbf{k}) + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \, \mathcal{K}(0) \, S(\mathbf{k}, X(x))$$

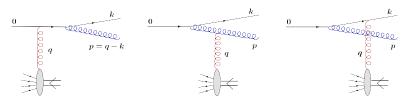
- the 'subtracted' piece is used to isolate the NLO impact factor
- CXY: the subtraction is performed only approximately

Why is this a problem?

- Any approximation/numerical error in the BK solution or in the subtraction procedure => mismatch between the 'added' and 'subtracted' pieces
- An extreme example: the GBW saturation model

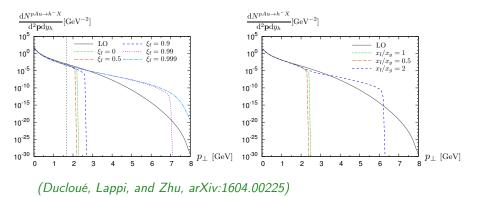
$$\mathcal{S}_{ ext{GBW}}(oldsymbol{k},X) \propto ext{e}^{-rac{k_{\perp}^2}{Q_s^2}}$$

- ullet the 'added' piece is exponentially suppressed at $k_\perp\gg Q_s$
- ullet the 'subtracted' piece develops a power-law tail $\propto 1/k_\perp^4$



ullet the overall result becomes negative at sufficiently large k_{\perp}

CXY factorization + GBW model for S

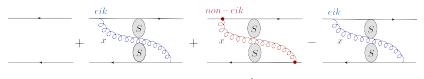


- This behavior is indeed visible in the numerical results
- Rapidity factorization scale $x_0 \equiv 1 \xi_{\mathrm{f}}$
- ullet Decreasing x_0 pushes the problem to higher k_\perp
 - \bullet strongly dependent upon the precise implementation of x_0

Back to basics

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

- Why do we need the rapidity subtraction in the first place ?
 - to disentangle evolution from corrections to the impact factor
 - ullet to ensure a strict expansion in powers of $lpha_s$



 \mathcal{S} (solution to \mathcal{BK} equation)

NLO correction to impact factor

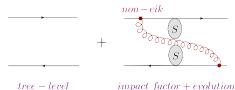
$$\mathcal{N} = \mathcal{S}(\mathbf{k}, X_g) + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right] \mathcal{S}(\mathbf{k}, X(x))$$

• All that is fine ... so long as it works !

A new factorization scheme

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

But when it doesn't, better return to the skeleton structure of pQCD



impact factor + condition

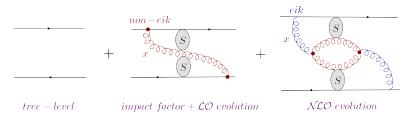
$$\mathcal{N}(\mathbf{k}) = \mathcal{S}_0(\mathbf{k}) + \bar{\alpha}_s(k_\perp^2) \int_{X_g}^1 \frac{\mathrm{d}x}{x} \mathcal{K}(x) \mathcal{S}(\mathbf{k}, X(x))$$

- NLO corrections to impact factor and evolution are mixed with each other
 - it goes beyond a strict NLO approximation
 - ullet non-local in x : goes beyond k_\perp -factorization
- Positive definite by construction
 - with $\mathcal{K}(x) \to \mathcal{K}(0)$: the r.h.s. of the LO BK equation

Restoring full NLO evolution

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

Recall: the NLO BK evolution also involves 2-loop graphs

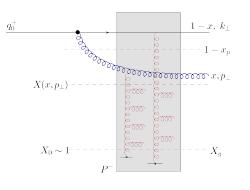


$$\mathcal{N} = \mathcal{S}_0 + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \, \mathcal{K}(x) \, \mathcal{S}(X(x)) + \bar{\alpha}_s^2 \int_{X_g}^1 \frac{\mathrm{d}x}{x} \, \mathcal{K}_2(0) \, \mathcal{S}(X(x))$$

- $\mathcal{K}_2(0)$: NLO correction to the BK kernel with collinear improvement
- ullet Complicated in practice ... but one can start with $\mathcal{S} pprox \mathcal{S}_{ ext{reBK}}$ and $\mathcal{K}_2 = 0$
 - remember: the problem already shows up with the LO evolution

Exact kinematics for target evolution

• 'Real amplitude': the gluon is produced in the final state



• LC energy conservation:

$$\frac{k_{\perp}^2}{2(1-x)q_0^+} + \frac{p_{\perp}^2}{2xq_0^+} = XP^-$$

- $\bullet \implies X = X(x, p_{\perp})$
- ullet simplifies when $k_{\perp} \simeq p_{\perp} \gg Q_s$

$$X(x) \simeq \frac{k_{\perp}^2}{xs} = \frac{X_g}{x}$$

- $\bullet \ X \le 1 \Longrightarrow x \ge X_g$
- Equivalently: gluon lifetime should be larger than the target width
- The same condition holds for the 'virtual' corrections
 - non-trivial cancellations required by probability conservation

Some proposals to solve the problem

- General idea: the 'subtracted' term performs an ... over-subtraction
- ullet Strategy: reduce the longitudinal (x) phase-space for the 'hard' gluon
 - factorization scale x_0 separating 'evolution' from 'impact factor' (Kang, Vitev, and Xing, arXiv:1403.5221)

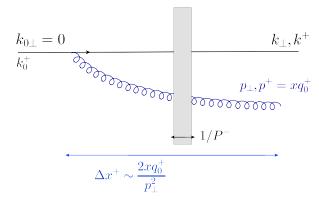
$$\int_0^1 \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right] \implies \int_0^{x_0} \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right]$$

- x_0 can depend upon k_{\perp} , say to account for 'time-ordering' (Ducloué, Lappi, and Zhu, arXiv:1604.00225)
- In principle, it shouldn't matter that much
 - ullet the x_0 -dependence must cancel in a complete calculation
- ullet In practice, it only pushes the problem up to somewhat higher k_{\perp}
 - also, strongly dependent upon the precise implementation of x_0

Energy conservation ("loffe's time")

(Altinoluk, Armesto, Beuf, Kovner, and Lublinsky, arXiv:1411.2869)

• x cannot be arbitrarily small since constrained by energy conservation



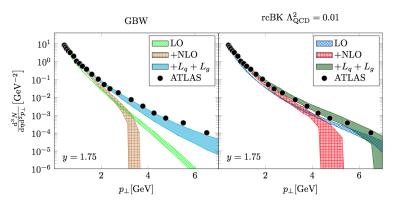
• Gluon lifetime should be larger than the target width

$$\frac{2xq_0^+}{p_\perp^2} > \frac{1}{P^-} \Longrightarrow x > \frac{p_\perp^2}{s}$$

Implementing the constraint

(Watanabe, Xiao, Yuan, and Zaslavsky, arXiv:1505:05183)

ullet It matters for the subtraction scheme only if $k_\perp\gg p_\perp$

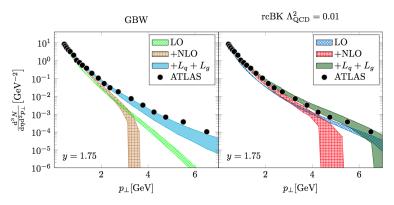


- ... which means it doesn't really matter in practice
 - when $k_{\perp} \gtrsim Q_s$, one also has $k_{\perp} \sim p_{\perp}$

Implementing the constraint

(Watanabe, Xiao, Yuan, and Zaslavsky, arXiv:1505:05183)

ullet It matters for the subtraction scheme only if $k_\perp\gg p_\perp$



- Once again, it pushes the problem to higher k_{\perp}
 - ullet ... and strongly dependent upon the model/evolution chosen for ${\mathcal S}$